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4. Rationale:  
 
Alzheimer’s disease (AD) represents a major public health concern for which there are currently 
no effective treatments. While the cause of AD is unknown, the widely accepted amyloid 
cascade hypothesis suggests that toxicity from amyloid-β (Aβ) or Aβ oligomers may lead to 
neuronal damage by promoting neuroinflammation.1–3 Both Aβ and neuroinflammation are 
believed to contribute to further neural dysfunction by promoting neuronal insulin resistance.4–8 
Neuroinflammation is currently measurable using PET imaging and cerebrospinal fluid (CSF).9–

12 However, these techniques have some drawbacks, including expense, invasiveness, and 
limited discriminability, which make them less desirable for use in the clinical setting or in 
research as longitudinal measures of disease progression.13 Neuronal insulin resistance, which 
can occur both within and outside the context of peripheral insulin resistance or diabetes, cannot 
be measured using current neuroimaging techniques.   
 
Our collaborators in the Kapogiannis lab have recently pioneered a novel technique which uses a 
combination of chemical and immunochemical methods to harvest neuron- and astrocyte-derived 
exosomes (extracellular vesicles) from blood. By measuring the contents of these exosomes, this 
group has been able to non-invasively quantify a diverse set of intracellular proteins from 
neurons and astrocytes, including markers of Aβ, tau, insulin signaling proteins, and 
neuroinflammation.14,15  
 
Recently, we received funding (K23, PI: Keenan Walker) to use exosomes to pursue several 
research objectives relevant to understanding neuroinflammation within the ARIC cohort 
(Ancillary Study #s 2018.21 and 2018.04; and NIH Grant: K23AG064122). This study will 
leverage existing ARIC data with novel exosome measurement methods to improve the 
understanding of 1) how systemic inflammation influences neuroinflammation and progression 
of Alzheimer’s-relevant neurocognitive outcomes (Aim 1), and 2) how neuroinflammation 
relates to the progression of Alzheimer’s-related neurocognitive outcomes (Aim 2). Additionally, 
we will pursue a third aim, which examines how neuronal insulin resistance relates to neuro-
inflammation and relevant neurocognitive outcomes (Aim 3).  
 
Using stored serum collected at ARIC visit 5, we will quantify from astrocytic-derived exosomes 
(ADE) levels of complement proteins, intracellular inflammatory regulators, and inflammatory 
cytokines, and relate these protein levels to measures of cortical Aβ accumulation measured 
using florbetapir PET, MRI markers of neurodegeneration and white matter integrity, and 
measures of cognition and cognitive decline in non-demented older adults who attended ARIC 
visit 5 (Figure 1). Additionally, we will use neuronal-derived exomes (NDE) to measure levels 
of insulin signaling proteins to relate to ADE neuro-inflammatory proteins, and PET, MRI, and 
cognitive markers of brain health. 
 
5. Main Hypothesis/Study Questions: 
Aim 1: Determine whether systemic pro- and anti-inflammatory cytokine signaling relates to 
astrocyte-derived exosome (ADE)-defined neuroinflammatory pathways. 

H1. Higher pro-inflammatory and lower anti-inflammatory peripheral cytokine levels will be 
associated with activation of ADE-defined neuroinflammatory pathways, particularly those 
involved in cytokine signaling.  



Aim 2: Evaluate the associations of ADE-defined neuroinflammation with subsequent amyloid 
accumulation, neurodegeneration, cognitive decline, and incident dementia. 

H1. Greater ADE-defined neuroinflammation will be associated with an increased rate of 
amyloid accumulation, neurodegeneration, cognitive decline, and incident dementia. 

Aim 3: Determine the associations of neuronal-derived exosome (NDE) markers of insulin 
signaling and ADE-defined markers of neuroinflammation with PET and MRI markers of 
neurodegenerative disease, and cognitive decline. 

H1. Higher NDE levels of proteins indicative of insulin signaling (p-IGF-1R, p-IR, pY-IRS-1) 
will occur in individuals with lower levels of ADE-defined neuroinflammation. 
H2.  Higher NDE levels of proteins permissive of insulin signaling (p-IGF-1R, p-IR, pY-IRS-
1) will be associated greater brain volume, lower WMH volume, and less cortical amyloid.  

 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Participants 
 
Inclusion criteria. We will 
measure ADE and NDE proteins 
from visit 5 serum of 300 
participants who are dementia-
free at ARIC visit 5. We will 
select 200 individuals who do 
not develop dementia by visit 6 
and 100 individuals who develop 
dementia by visit 6 (a 2:1 ratio). 
Only participants who have MRI 
data available at visit 5 will be 
selected. If possible, we will also 
preferentially select individuals 
who have PET imaging 
available.  
 
Exclusion Criteria: 

1) Missing post-visit 5 
dementia follow-up 
information 

2) Dementia diagnosis at visit 5 
3) Non-white or non-black race 

 
Exposure Variables 
Measurement of peripheral inflammation biomarkers. We will use proteins measured at 
ARIC visit 5 using the SOMAscan platform to characterize peripheral inflammatory signaling. 
Specifically, we will examine pro-inflammatory cytokines associated with cognition and 
dementia status in previous studies of humans16–22 and animal models.23–26 We will also measure 
a group of cytokines shown previously to regulate or suppress the pro-inflammatory response, 

Figure 1. Study design and flowchart for Aim 1 and Aim 2 



including IL-4, IL-10, IL-13, TGF-β, and GDF-15.27–30 Using these protein measurements, we 
will derive pro- and anti-inflammatory composite scores using principal component analyses or 
by calculating the mean of standardized 
cytokine levels for each participant.31 
The ratio of pro- to anti-inflammatory 
composite scores will also be 
calculated as an indicator of the 
balance between pro- and anti-
inflammatory networks. Depending on 
specimen availability, proteins of interest 
will be validated in a subset of participants using targeted immunoassays. 
 
Astrocyte-derived exosomes (ADEs) and neuronal-derived exosomes (NDEs). ADE and 
NDE analyses will be conducted within 
the lab of Dr. Dimitrios Kapogiannis, 
located at the National Institute on 
Aging’s (NIA) Baltimore campus. Dr. 
Kapogiannis’ lab has pioneered the use of 
neuronal- and astrocyte-derived exosomes 
for the study of neurological disease. 
Exosome measurements will be conducted with serum specimens using previously published 
methods.32,33 ADEs and NDEs will be isolated from blood, counted, and measured; protein 
contents will be quantified using ELISAs. 
 
Acknowledging the multidimensional nature of the astrocytic inflammatory response (and what 
may be a unique contribution of each inflammatory pathway to Alzheimer’s disease 
pathogenesis), we will examine three components of astrocytic inflammation: 1) complement 
activation/regulation, 2) cytokine signaling, and 3) intracellular inflammatory regulation (listed 
in Table 1). Complement. Astrocytes are a primary source of complement protein in the 
brain,33,34 and considerable evidence implicates complement’s role in Alzheimer’s disease.35–38 
The proposed research will measure complement proteins involved in promoting inflammation 
(C3a), phagocytosis (C3b), and the membrane attack (C5b), as well as proteins involved in the 
regulation of complement expression (i.e., CD59 and DAF). Cytokine signaling. We will 
measure ADE levels of pro-inflammatory cytokines (e.g., TNFα, TNFR1, TGFβ, IL-1β, IL-6, 
IL-10 IL-15, and IL-18) and STAT2/3 (activators of cytokine production),39 each of which has 
been directly implicated in regulating Alzheimer’s disease pathogenesis.40–43 Intracellular 
inflammatory regulators. We will also measure NF-κB (a transcription factor) and MAPKs p38α 
and JNK (intracellular enzymes), each of which has been identified as a master regulator of glial 
inflammation.42,44–46 We will measure total and phosphorylated NF-κB, p38α, and JNK within 
ADEs.  
 
We will also measure several proteins from NDEs which are relevant to understanding 
neuroinflammation in the context of Alzheimer’s disease. NDEs will be used to measure amyloid 
(Aβ42), total tau, p181-tau, and levels of insulin signaling proteins, including p-IGF-1R, p-IR, 
pY-IRS-1, and downstream protein kinases, which have been previously implicated in AD.47–49 

Table 1. Astrocyte-derived exosome 
neuroinflammatory proteins of interest 
Complement activation: C3a, C3b, C5b, CD59, DAF 
Cytokine signaling: STAT2/3, TNFα, TNFR1, TGFβ, 
IL-1B, IL-6, IL-10 IL-15, and IL-18 
Intracellular inflammatory regulators: 
phosphorylated NF-κB, and p38α and JNK MAPKs   

Figure 2. Pro- and anti-inflammatory proteins to be 
included in analyses 



We will create an insulin signaling pathway (ISP) composite score using a principal component 
analyses that includes all NDE insulin signaling proteins. 
 
Outcome Variables 
 
We will use variables measured at ARIC visit 5 for our cross-sectional analyses. We will assess 
visit 5 to visit 6/7 change in neurocognitive variables listed below as an additional measure of 
outcome. 
Florbetapir PET, Standardized Uptake Volume Ratio (SUVR): SUVR is a measure of 
florbetapir (amyloid) in prespecified regions of interest derived from the ARIC-PET study. 
Global mean cortical SUVR will be used; this is a weighted average (based on region-of-interest 
(ROI) volumes) of regions known to be typically affected in Alzheimer’s disease. For cross-
sectional analyses, global cortical SUVR will be evaluated at a cut-point of 1.2, with values >1.2 
considered positive. SUVR will be examined as a continuous variable for our examination of 
change in global cortical SUVR (after correcting for skewness using a transformation). The 
image processing protocol used for the ARIC-PET has been described in detail previously.50   
Total and Regional Brain Volume: We will examine total brain volume as an overall measure 
of parenchymal volume loss. Several regions of interest (ROIs) will also be examined: the 
hippocampus, frontal, temporal, parietal, and occipital lobes. In addition, we will evaluate the 
Alzheimer’s disease Signature Region composite variable, which has been previously derived in 
ARIC. All analyses using this variable will include adjustment for total intracranial volume. 
White matter hyperintensity volume (WMH): WMH burden was determined using a 
quantitative computer-aided segmentation program which uses an algorithm to segment fluid-
attenuated inversion recovery (FLAIR) images (FLAIR-histoseg) to measure the volumetric 
burden of leukoaraiosis.51 All analyses using WMH will include adjustment for total intracranial 
volume. 
White matter microstructure: Diffusion tensor imaging (DTI) will be used to evaluate axonal 
integrity. Measures of mean diffusivity (MD) and fractional anisotropy (FA) will be extracted for 
the following regions: total brain white matter, subcortical white matter, and periventricular 
white matter. We will also examine at specific white matter tracts previously implicated in AD 
pathogenesis (e.g., fornix, hippocampal cingulum bundle).  
NCS Comprehensive Cognitive Battery: We will also examine global and domain-specific 
cognitive function at visit 5 and cognitive decline between visits 5 and 7 using the cognitive 
factor scores made available within ARIC.52,53 
Incident Dementia: This analysis will include participants who were classified as either 
cognitively normal or MCI at visit 5. Dementia will be defined using both the information from 
the full Visit 6 examination (and Visit 7 when data available) with expert committee diagnosis 
and information captured in annual follow-up (AFU) interviews using the Six Item Screener 
(SIS) and the Ascertain Dementia 8-item Informant Questionnaire (AD8). Date of dementia 
onset will be captured using the SIS and AD8; dementia diagnosis will be confirmed at Visit 6 
for those who attend Visit 6. Participants who attended Visit 5, but not Visit 6, and have SIS and 
AD8 information available from the AFU will also be included. For participants who did not 
attend Visit 6, the SIS, AD8, hospital discharge codes, and death certificates will be used to 
define dementia diagnosis and date of onset.  



 
Statistical Analyses 
 
H1. We will use linear regression to examine the cross-sectional association between peripheral 
inflammatory proteins and ADE markers of neuroinflammation. We will examine a model 
adjusted for potentially confounding demographic characteristics (age, education, sex, center-
race, and APOE ε4 status). We will also examine a model that additionally adjusts for visit 5 
physiological variables (body mass index, total cholesterol, HDL cholesterol), medical 
comorbidity (hypertension, coronary artery disease, and diabetes), and other relevant factors 
(current smoking status, anti-inflammatory medication use). 
 
H2. We will use linear regression and linear mixed effect models to examine the association of 
ADE variables with cross-sectional and longitudinal measures of cognition, brain MRI, and 
amyloid PET. For analyses of cognitive decline, we will also incorporate multiple imputation for 
missing cognitive data. Because the distribution of amyloid change will likely be highly 
skewed,50 we will also use logistic regression and model amyloid change categorically (e.g., top 
quartile of change). We will also consider quantifying amyloid change by estimating the 
temporal trajectories of voxel-wise amyloid using an expectation-maximization algorithm which 
has been published previously.54  We will determine the association between exposure variables 
and incident dementia using Cox proportional hazard regression. For all analyses, the moderating 
effect of sex, APOE ε4 status, and amyloid status (defined using PET and NDE proteins) will be 
examined using interaction terms.  We will examine a model adjusted for potentially 
confounding demographic characteristics listed above. We will also consider additionally 
adjusting for physiological variables and medical comorbidity, as appropriate. 
 
H3. We will use linear regression to examine the cross-sectional age- and sex-adjusted 
associations between NDE insulin signaling pathway (ISP) composite score and ADE markers of 
neuroinflammation. We will use the regression models described above to examine the 
association of NDE insulin signaling proteins with total and regional brain volume, WMH 
volume, cortical amyloid, cognitive change, and dementia risk.   
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